
2007-0123-02 

Virtual SEA: towards an industrial process 

Gérard Borello  
InterAC 

Laurent Gagliardini 
PSA Peugeot Citroën Automobiles 

Copyright © 2007 SAE International

ABSTRACT 

In the high frequency range, the SEA method has been 
applied to air borne path with success to predict both 
internal and external sound environment. Nevertheless, 
structure-borne prediction is still at issue -especially for 
cars, in the range 200 to 2000 Hz- as results are widely 
dependant on subsystem partition and validity of various 
assumptions required by SEA. 
Experimental SEA test technique (ESEA), applied to car 
bodies, has brought to the fore that SEA power balanced 
equations could robustly describe structure-borne noise. 
To make ESEA predictive, the database of measured 
FRF is simply replaced and enlarged by synthesized 
data generated from a finite element (FE) model and a 
selected observation grid of nodes. This technique, 
called Virtual SEA (VSEA), has been presented at 
SAE/NVC 2003. Since then, many developments have 
been carried out to improve the general efficiency of the 
three main steps of VSEA: 

• The generation of the band-integrated FRF 
database (between nodes of the observation 
grid) is now integrated in the virtual SEA solver. 
As several millions of band averaged FRF can 
be required for a full car body analysis, a 
specific fast FRF synthesis is performed using 
analytical integration and band-optimized 
solutions by limiting the number of cross-modal 
terms in the series solution. 

• Automatic subsystem partition has been widely 
improved by developing different algorithms that 
limit the sensitivity of results to initial conditions. 

• ESEA loss matrix identification process has 
been reviewed for better resolution of highly non 
homogeneous system such as car bodies. The 
normalization of squared FRF matrix by the 
input mobility matrix allows a direct 
determination of subsystems modal density. The 
dynamics of a very large 3D FE model can thus 
be compressed into a small SEA loss matrix 
while preserving local transfer information at all 
nodal observation points. 

Examples of applications are shown on car components. 

INTRODUCTION 

Applications of SEA to car sound transmission have 
demonstrated that SEA method can predict air-borne 
transmission path with good success. The structure-
borne sound prediction was found to be more 
challenging -mainly in the range 200 to 2000 Hz- as 
results are widely dependant on subsystem partition and 
validity of various “fuzzy” assumptions required by SEA. 
By comparing results from both "Analytical" and 
"Experimental" SEA (ESEA) modeling, it was shown that 
ESEA models could robustly describe structure-borne 
noise [1,2], meaning a SEA representation of energy 
transfers in a car body was achievable while analytical 
models were found very sensitive to user's choice due to 
a priori assumptions in subsystem decomposition and 
lack of theory to predict indirect structural coupling loss 
factors (CLF).  

To make ESEA predictive, the database of measured 
FRF was simply replaced and enlarged by synthesized 
data generated from a Finite Elements (FE) model. This 
technique, called Virtual SEA, was presented at the SAE 
conference NVC 2003 [3] and was showing very 
promising results. Predicted transfers in a car chassis 
ware within 2 dB from measured data while classical 
SEA analytical model was away from 10 to 20 dB. 

Since then, a tentative work was carried out to give 
some theoretical background to the technique. At the 
same time, relying on the new theoretical developments, 
the computational efficiency was improved, especially 
for transfer functions computations and for the automatic 
sub-structuring procedure.  

In the first part of the paper, the path from the FEM 
results to a reduced non-dimensional power balance will 
be explained. Then, the identification of a SEA model to 
the reduced model will be shown. At least, 
computational improvements will be explained. But first, 
let us define the modeling framework. 



MODELING FRAMEWORK 

The framework of the present development is the linear 
theory of structural vibrations of finite-sized systems. 
The considered systems are modeled using their linear 
constitutive equations and boundary conditions [4]. The 
resulting problem is solved with a Finite Element Method 
[5] either using local coordinates or generalized 
coordinates (modes). In the frequency domain, the 
problem takes the form:  

2j ω⎡ ⎤+ − ⋅ =⎣ ⎦K D M x f

⎤⎦M

 (1) 

where f is the complex vector of external forces, x is the 
complex displacement, K and M are respectively the 
stiffness and mass matrices, and D is a damping matrix. 
All matrices have good positivity properties. 

Equation (1) may also be written 

fAx= ,  (2) 

with  is introduced as the 

dynamic stiffness matrix. 

2( ) j ωω ⎡= + −⎣A K D

The inverse expression provides the displacements of 
the structure, for given external loads. For energy 
approaches, it is convenient to introduce the velocity of 
the structure, xv ωj= , so that : 

= ⋅v T f  (3) 

where  is called the mobility transfer 
matrix of the structure. 

1)()( −= ωωω AT j

The mobility transfer matrix is a square complex 
symmetric matrix. As car body structures are mainly 
made of shells, only normal degrees of freedom can be 
considered, assuming no in-plane –or tangent- 
resonance occurs in the studied frequency range. More 
precisely underlying in-plane energy currently shared by 
shells in the low frequency is always taken into account 
in the transfers as it contributes to normal velocity. As an 
option, it is also possible to capture the mobility transfer 
matrix in the direction of maximum square velocity in 
both input and output directions of the local stress-to-
velocity tensor, avoiding normal direction assumptions, 
useful for complex 3D geometry. Then if in-plane energy 
is becoming predominant above a given frequency, the 
model will converge to in-plane behavior. 

Due to computing limitations, the observation of the 
structure is limited to a reduced number of observation 
points, assuming its statistical dynamic behavior can be 
captured from a coarse sampling.  

In the following, we will introduce the real part of the 
input mobility matrix as a vector: 

{ }{ }Ty Rediag=  (4) 

The diagonal input mobility matrix will be noted Y, such 
as: 

{ }ydiagY =  (5) 

Where { }ydiag  is a diagonal matrix, which diagonal 
values are equal to the vector y, with the property 

{ }{ }ydiagy diag= . 

TOWARD A MID-HIGH FREQUENCIES DATA 
STATISTICAL REDUCTION 

RANDOM EXCITATION  

Most of the structural modeling work wishes to get a 
model that applies for any possible load case. One 
reason is that, during the vibroacoustic design process, 
one of the first questions to answer is “where to connect 
the vibration sources?” or “how to design connection 
points”. As far as the sources position and their 
intensities are still unknown, a stochastic modeling has 
to be used. 

Classically, the “rain-on-the roof” [6] assumption is used; 
applied forces are modeled as uncorrelated point forces 
with equal intensity in average. If one notes  a vector 
of random forces, following the “rain-on-the-roof” 
definition, one may write the mathematical likelihood of 
the external forces cross-spectral matrix as: 

f~

{ } { }E =tff dia 2g f%%  (6) 

where  is the vector of the power spectral density of 
the uncorrelated forces applied to each point of the 
structure.  

2f

In this paper, we will consider a slightly different 
expression because we work on structures that may be 
strongly heterogeneous because they are designed on 
purpose. When looking to the structure vibrations from 
an SEA point of view, vibration levels are related to the 
power inputs and not applied forces. This implies that 
the most robust design regarding interior noise is 
obtained when all sources in the same subsystem 
provide the same power. Practically, assuming we deal 
with force sources [7], this leads to a design of sources 
connection points where input mobilities are such as the 
differences between injected powers are minima.  

Introducing the cross-spectral power matrix between 
applied forces and structure velocities, expression (6) is 
replaced by: 

{ } { }E =tYff diag%% π  (7) 



where ¨is the mean power input into the structure such 
as,  

π

= ⋅ 2π Y f  (8) 

It may be noticed here that the proposed stochastic 
modeling of excitations tends toward the classical “rain-
on-the-roof” when the considered structure is 
homogeneous. 

RANDOM RESPONSE OF THE STRUCTURE 

The random response of the structure, v~ , to the random 
applied forces, , is defined by the likelihood of a cross-
spectral matrix 

f~

ttt TffTvv ~~~~ =  (9) 

As explained above, we are interested in point-square 
velocities and wish to compute the likelihood, E,  of the 
cross-power spectral density vector:  

{ }{ }2 E diag= tv % %vv  (10) 

Equations (8) to (10) leads to 

{ }{ }2 diag −= 1v TY diag π Tt

⋅

 (11) 

It can be demonstrated that expression (11) can be 
favorably put into the form: 

2 −= 2 1v T Y π  (12) 

where is the real matrix of the term-to-term squared 
value of . 

2T
T

It is noticed here that  is a quantity that can be 
measured, and therefore, computations will always have 
to come back to . 

2v

2v

NON-DIMENSIONAL POWER TRANSFER BALANCE 

The authors propose here to introduce the, so-called, 
local modal energy: 

21
n vYe −=

4
1

 (13) 

Using definition (13), expression (12) is equivalent to: 

πYTYe 121
n

−−=
4
1

 (14) 

This last expression is a non-dimensional, symmetric 
relationship which is a good preset for further 
mathematical deductions as also shown in [15]. 

FREQUENCY AVERAGING 

Medium and high frequencies are frequency domains 
where it is accepted that the dynamic response of a 
structure is dominated by stochastic effects, so that only 
average quantities have enough robustness to be 
worked out. 

Medium frequencies differ from high frequencies in the 
fact that some of the dynamical components still behave 
as low frequency; that is to say they are influenced by 
their boundary conditions and their geometry, or, in other 
words, controlled by few vibration modes. High 
frequencies, to the contrary, means a high enough 
number of modes involved in the responses so that 
asymptotic approaches apply. 

The band-integrated modal energy, over a frequency 
band B, is defined as: 

( )
B

B

f df= ∫n ne e  (15) 

Substituting the local modal energy expression (14) in 
(15), and assuming a constant power spectral density 

0π  for the injected power vector over B, 

0B
B=π π  (16) 

It comes: 

BB B
π=n ne E  (17) 

where the symmetric Modal Transfer Energy Matrix, 
, is defined as BnE

∫ −−=
B

B df
B

121
n YTYE

4
1  (18) 

and corresponds to the mean modal energy response of 
the system over the band B to unit-injected power. 

At the moment, the modal transfer energy matrix is 
computed in an approximated way as: 

 121
n YTYE −−= BBBB 4

1
 (19) 

For practical applications, 1/3 octave band are used. 

It is quotable, as shown on figure 1, that this last matrix 
has a better definite numerical structure than the 
previously considered, 

B
2T . The dynamic range of 

point-to-point transfers is reduced from 94 down to 39 
dB by mobility vector normalization. 



This is a key-point when trying to apply an automatic 
partitioning process into subsystems based on the 
optimization of the numerical organization of matrices as 
well as measuring the errors attached to the statistical 
modeling. 

 

 

 

 

 

 

Figure 1: On the left transfer mobility matrix of a car body 

B
2T averaged over 630 Hz 1/3 octave band; On the right, transfer 

modal energy matrix   BnE

SPACE AVERAGING AND SUB-STRUCTURING 

The main goal of this work is to provide a reduced model 
of the structure dynamical behavior that is robust to local 
heterogeneity -thanks to the local modal energy 
definition-. The likelihood of the local modal energy is 
then assumed to be equal to the space-average over a 
given space domain, e.g. a subsystem. The space-
averaged modal density over a given subsystem, iΩ , is 
defined as : 

,

1
ii
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B B
dM

S ΩΩ
Ω Ω

= ∫n ne e  (20) 

where  measures the extend of the 

considered structural subsystem. 

∫
Ω
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i

ii
dMS

Practically, the space-averaged modal energy is 
computed as the discrete mean of local sampled values: 
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1..

1
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n B n B k
k Ni

e
NΩ

=

= ∑ e  (21) 

where is the number of observation points belonging 
to , and is the local point index. 
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Introducing the rectangular sub-structuring matrix, S, 
such as, 
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i

i k
i

i

S
N

Ω
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=

∈Ω
 (22) 

the vector of averaged modal energies can be 
expressed as: 

,B BΩ Ω=ne S en  (23) 

 

In the same manner, the vector of the averaged input 
power within each subsystem is written as: 

BB πSπ Ω
++

Ω =,  (24) 

Max Dynamic 
Range: 94 dB 

Max Dynamic 
Range: 39 dB Where ( )−++ =

1t
Ω Ω ΩS S S ΩS  is the pseudo-inverse 

of S  Ω

It appears that the pseudo-inverse may be computed 
easily, and it is defined by:  
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The average modal energy transfer between 
subsystems is then deduced from equations (17), (23), 
(24) 

ΩΩΩ = ,,, BBB πEe nn  (26) 

where  is the reduced modal energy 
transfer matrix of the studied system.  

t
n,n SESE ΩΩΩ = BB,

Equation (26) provides the likelihood estimate of the 
frequency band-averaged local modal energies that is 
derived from the fundamental equations of the problem, 
solved using a finite elements method. Therefore, 
Equation (26) constitutes a reduced statistical model. 
The only assumption made until now is sources 
independence and the accuracy of results is related to 
the sampling of observation points. Of course, equation 
(26) is strongly related to the given subsystem partition 
that is considered. In the following sections, it will be 
shown how this model can be identified to an SEA 
model and how the automatic sub-structuring is 
performed in an optimal way regarding SEA.  

This is basically what Virtual SEA means for the authors: 
identifying a SEA model to a statistical reduction of FE 
results on selected sub-structures (or subsystems). Its 
main advantage is to provide a fully consistent modeling 
basis for any complex structure that can be modeled 
using a FE method. 



ESEA PRINCIPLES 

Before introducing the Virtual SEA formulation, it is 
needed to come back to the experimental SEA, that 
basically remains the framework of Virtual SEA. ESEA is 
a technique that has been developed from more than 20 
years [1, 8, 9], mainly to build and validate hybrid SEA 
models that include both measured and/or predicted 
(analytical) SEA parameters. It mainly consists in the 
identification of the SEA model associated to given sub-
structured system, from measured Frequency Response 
Functions (FRF). 

In a direct SEA approach of a problem, the injected 
power, loss factors, modal density and masses are 
known parameters, obtained from analytical formulas 
and subsystem energies are the unknowns. SEA 
parameters are linked by the power-balanced set of 
equations, describing the energy conservation of the 
system, integrated over a frequency band B: 

,B BB B
ωΩ Ω= ⋅π L eΩ  (27) 

where BΩπ  is the vector of powers applied by external 

forces in each subsystem, BΩe  is the vector of total 
vibrational energy stored within subsystems,  the 
loss matrix in-between the structured system 

Ω,BL

iΩ∪=Ω , 
in the frequency band B. 

From here, considering all variables are averaged over 
space and integrated over frequency, the indices B and 

 will be omitted. Moreover, in order to remind that 
energies are obtained from a mean over a number of 
discrete observation points an upper bar is used for 
estimated average values. Hence, equation (27) is re-
written in a more suitable form: 

Ω

Bω= ⋅π L e  (28) 

Assuming the system is resonant enough so that the 
potential and kinetic energies are equal, the subsystems 
energy vector is generally approximated as: 

{ }= 2e diag m v⋅  (29) 

where m is the vector of subsystems equivalent masses 
for the frequency band B. 

The loss matrix is build from loss factors (damping loss 
factor , iη ; coupling loss factor, ) as follows: ijη

ji

ji
L

ji

ji
iji

ij
≠−

=+
=

∑
≠

 when 

 when 

η

ηη
 (30) 

Coupling loss factors are assumed to satisfy the well-
known SEA reciprocity relationship: 

jijiji nn ηη =  (31) 

when introducing the modal density of subsystem i, . in

This relationship denotes the necessity of the existence 
of a symmetrical formulation inherent to the linear theory 
of vibrations. Thus, the symmetrical modal loss matrix 
may be introduced: 

{ }= ⋅nL L diag n  (32) 

where n is the vector of the number of modes in the 
subsystems. 

Using (32), equation (29) can be written in a symmetrical 
form: 

Bω= ⋅n nπ L e  (33) 

where { }−= ⋅
1

ne diag n e  is the vector of modal energies 
and Bω  is the angular frequency at the central frequency 
of band B 

This last relationship appears to be the inverse form of 
equation (26) which can be computed using a finite 
element modeling. This is where SEA and Virtual-SEA 
merge. 

In ESEA, the loss matrix is the unknown while the 
averaged (space and band average) power input and 
the averaged subsystem velocities are measured. The 
first step of the method consists in estimating the 
subsystems energy. In a second step the loss factors 
can be identified. 

ENERGY ESTIMATION 

The mass vector has to be determined in order to 
estimate the subsystems energies from equation (28). 
The individual subsystems masses are generally 
estimated using a power injection method [10] applied to 
each subsystem: 

2
, iiitoti vmy

i
ωη=  (34) 

Where iy  is the active injected power in the excited 

subsystem iΩ , 2
iv  is the mean squared velocity over 

iΩ  and  is the total apparent damping loss factor of 
the subsystem i. 

itot ,η



The so-called equivalent mass of a subsystem is then 
computed as: 

2
, iitotB

i
i

v

y
m

ηω
=  (35) 

The total loss factor can be reasonably estimated from 
reverberation time measurements at various positions 
within . It is classically expressed as: iΩ

 
iB

itot Tω
η 8.13

, =  (36) 

where iT  is the frequency band and space average of 
the structural reverberation time. 

LOSS MATRIX IDENTIFICATION 

The balance equation of each of the subsystems when 
they are independently excited at a turn by a given 
power -the most complete experience that can be built 
from the structure- provides  equations, which is 
enough to identify all loss factors. 

2
ΩN

When each subsystem is excited at a turn by a unit 
power, energies in each subsystem are related to the 
loss matrix by: 

ILE =Bω  (37) 

Where E the transfer energy matrix of which term  
denotes the response of subsystem i when subsystem j 
is excited.  

ijE

The loss matrix can then be identified as: 

1EL −=
Bω

1
 (38) 

Nevertheless, a direct inversion of the transfer energy 
matrix generally leads to many negative loss factors. 
One reason could be the developed theory is not 
appropriate to describe the reality. Another reason, 
dominating until now, is that the inversion is very 
sensitive to the measuring noise. 

Taking advantage of its peculiar matrix structure, N. 
Lalor [8] has shown that the energy transfer matrix 
inversion procedure could be more efficient –less noise 
sensitive– by solving separately the damping loss 
factors, from the coupling loss factors. The Lalor's 
technique displays another advantage; it allows the 
simplification of the SEA network, by considering only 
the relevant coupling loss factors. This method has been 
widely used throughout the SEA-XP software [11] to 
solve many industrial problems. Nevertheless, its 
practical application remains very sensitive to 

measurement quality. It is especially the case for 
heterogeneous structures such as car bodies, where 
point mobilities can range over 10 dB in a given 
subsystem.  

ENHANCED IDENTIFICATION OF THE VIRTUAL SEA 
MODEL 

VSEA as a numerical technique was build in order to 
improve ESEA by taking advantage of numerous 
available data to improve the statistics and full model 
consistency avoiding measurement noise. Following the 
developments of the second section, it appears that a 
more accurate statistical modeling can be performed 
using equations (26), becoming (32) after inversion. The 
same procedure as for ESEA is applied to identify the 
modal loss matrix, except that the procedure previously 
used to determine the damping loss factor –already 
known as an FE model parameter- is now used to 
extract the modal densities.  

MODAL DENSITIES DETERMINATION 

The equations for modal density identification are 
obtained by writing the energy conservation in the 
system (i.e. the sum of dissipated powers into 
subsystem is equal to the sum of injected powers). 
Considering the definition of the loss matrix (30) and 
definition (33), the summation of the lines of equation 
(33) leads to: 

{ }t

Bω ⋅ =∑ne diag η n π  (39) 

where  is the vector of the damping loss factors 
attached to each sub-system and known from the model 
data. 

η

At the moment, we only consider the case of a uniformly 
damped structure, that is to say: 

{ } η=diag η I  (40) 

When only one subsystem is excited by a unit-power, 
1=∑ π  and one obtain the following set of equations: 

Bηω ⋅ =nE n 1  (41) 

Where 1 is a vector of which elements are equal to 1 
and dimension is the number of subsystems 

Finally, the modal density appears to be: 

11
B

Bηω
−

Ω = ⋅n,B,Ωn E 1  (42) 



SEA LOSS MATRIX CALCULATION 

Starting with expression (26), one can compute the SEA 
loss matrix using relations (32), (33) and (42) as : 

{ } 111

Bω
−−= nL E diag n  (43) 

It is noticeable here, that the SEA system has been 
identified without reference to the sub-system masses. 
This comes from the fact that subsystem energy and 
velocity are both computed from the modal energy. 
Identifying the modal energy expressions (13) and (33), 
introducing expression (23) leads to 

{ }1
4

−− ++ = ⋅11 2
Ω ΩS Y S v diag n e  (44) 

Relation (44) is then identified to expression (29) to get 
the subsystem equivalent masses: 

{ } { } 11
4

−
=diag m diag n Y  (45) 

where  ( ) 1−− ++= 1
Ω ΩY S Y S is the diagonal matrix 

of the mean mobilities of the subsystems  

This expression (45) is proposed by many authors to 
estimate either m, n or Y when the two other variables 
are fixed. Due to the fact that all matrices are diagonal, 
expression (45) applies independently for each 
subsystem. 

MEASURE OF THE MODELING IMPROVEMENT 

The modification of the formulation that is proposed 
leads to cumulative positive effects: the modal energy 
transfer matrix provides a better definition of the optimal 
sub-structuring and at the same time subsystems 
internal variance is reduced. The performance of the 
Virtual SEA model is checked by comparing the 
difference between the initial and the reconstructed 
transfer matrix 

B
2T . 

The reconstructed solution is built by substituting point-
modal energies in each subsystem, by their mean 
values, obtained from the VSEA model. 

The reconstructed vector of the point modal energies is 
more mathematically obtained by inverting expression 
(23) : 

ˆ t++= ⋅n Ω ne S e   (46) 

Using equations (17), (19), (24), (43), and (46), the point 
to point transfer matrix can be reconstructed from the 
SEA loss matrix, as: 

{ } 12 4ˆ t

Bω
−++ − ++= ΩT YS diag L Sn 1

Ω Y  (47) 

It may be noticed here that the  

Various metrics can be used to measure the 
reconstruction error. It was found convenient, for a 
model built for engineering purposes, to use the 
difference of transfer levels in dB as an error indicator: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 2

2ˆ
10

T
Tε Log  (48) 

The statistics (mean values, variance or histograms) of 
the error can then be calculated at the overall system 
level or at the subsystem level. Figure 7 later shows an 
example of map of the error within each subsystem for a 
body-in-white at 630 Hz.  

FRF COMPUTATION IMPROVEMENT 

FRF SYNTHESIS PRINCIPLE 

The proposed technique relies on the computation of 
large size and band-averaged transfer matrices like the 
transfer matrix 

B
2T  of equation (19). From ESEA 

experience, we know that around 20 nodes are required 
per subsystem to get a satisfactory low variant estimate 
of the mean squared transfer velocity and that around 50 
subsystems are expected for describing mid-frequency 
interactions in a car body, the total number of 
observation nodes should be at least of about 1000 for a 
full body-in-white FE model. That means the synthesis of 
9 million of FRFs as the local transfer is estimated in X, 
Y, Z directions at each nodal point. Obviously 
commercial FE post-processors are not designed for 
such an intensive task and it was decided to develop a 
dedicated FRF solver for computing the mean squared 
velocity matrix in decent time.  

NASTRAN is used as the core FE solver to extract the 
eigenvalues of the dynamic problem (1), , and to 
store the related mode shape amplitudes at the 
observation nodes, . The mode shapes are 

normalized such as  . 

2
mω

mφ

1=m
t

m Mφφ

Assuming a diagonal, frequency-independent, modal 
damping, such as , the transfer matrix 
defined by equation (3) can be written as a modal sum: 

mm
t

m η=− DφKφ 1

( )∑=
m

mmh TT ω  (49) 

where  and t
mmm φφT =

mmm
m j

jh
ωωηωω

ωω
+−

= 22)(  is 

the generic modal response function. 



Using definition (4), the input mobility vector appears to 
be: 

( ){ } { }Re m
m

h diagω=∑ my T  (50) 

The band-averaged squared value of the transfer matrix, 
as used in equation (19), is obtained as: 

( )
2

2 1  m mB
mB

T h
B

dω ω= ∑∫ T  (51) 

In a same manner, the band averaged input mobility is 
computed as:  

( ){ } { }1 Re m mB
mB

h diag d
B

ω ω= ∑∫y T (52) 

Several FRF solvers have been developed to speed up 
computation and decrease memory consumption, when 
computing expressions (51) and (52). 

FULL MODAL INTEGRATION SOLVER 

The first solver is an exact –but slow- solver. The modal 
integration is always performed on the full set of modes. 
The generic modal response function is sampled for 
each mode and stored as a 2D array [frequency, mode]. 
The tensor product ( ) mmmh Tω ω,  is then vectorized, 
while reciprocity is used to compute only half of the 
transfer matrix. After a cumulative sum of modal terms, 
all narrow band FRFs are band-averaged.  

For automotive applications in the mid frequencies 
(f<900 Hz), the number of modes may be as many as 
5000 and the number of points necessary to build a 
VSEA model overpass 1000. Therefore, the synthesis 
CPU time and required memory are both quite large. 
Nevertheless, this option was kept as a reference 
solution. 

BAND OPTIMIZED SOLVER 

In each band, the modal synthesis is limited to the 
modes of which eigenfrequency remains within the band 
(resonant modes). Using strict selection criteria, the 
lowest analysis bands may be empty of resonant mode. 
These bands are thus filled up with the closer off-band 
modes in order to have at least 5 modes (user-defined 
value) in any studied frequency band. This simple 
selection of modes provides a speed-up factor of about 
10. The associated error is very low. 

BAND OPTIMIZED AND ANALYTICAL INTEGRATION 

The frequency integral operator of equation (51) can be 
moved inside the modal summation symbol and 
developed in the following way: 

( )

( ) ( ){ }

22 2

*
'

'

1

                  2 Re
m

m mB
m B

m m m
m m B

h d
B

h h d

ω ω

ω ω ω

=

+

⎡
⎢
⎣

⎤
⎥
⎦

∑ ∫

∑∑ ∫

T T

T T

(53) 

Both frequency integral of equation (53) have analytical 
expressions obtained by integration in the complex-
plane [13], which in a way simplify the computations. 
Due to the modal cross-terms, on the other hand, the 
required number of operations is largely increased. As 

( ) ( ){ }*Re
mm

B

h h dω ω ω∫  is rapidly decaying when m 

and m' correspond to modes with distant 
eigenfrequencies, the double summation can be also 
truncated, taking into account only interacting modes. 
The selection of cross terms is governed by a user-
defined parameter, that can be used to balance between 
solution accuracy and CPU time. 

The time to get the FRF matrix can thus be tuned at 
convenience by controlling the amount of processed 
information. The 9 millions of required FRF can be 
generated in less than an hour or over several days on a 
standard PC computer, depending on acceleration –
precision– options. 

A similar treatment is performed on the real part of the 
input mobility, that doesn’t need any further 
simplification: 

{ } ( ){ }1
Rem mB

m B

diag h d
B

ω ω= ∑ ∫y T  (54) 

SUBSTRUCTURING PROCEDURE IMPROVEMENT 

To get a pertinent SEA subsystem partition for any FE 
model, whatever is its degree of structural complexity, 
an automated process seems the more reasonable 
solution. This process called sub-structuring is not trivial 
in a car due to the dynamical “morphing”, i.e. the fact 
that, depending on the frequency, a part of the structure 
can switch from one behavior (a hollow body) to another 
(a shell assembly). As a consequence, the resulting sub-
structuring is expected to be changed from one 
frequency band to another. As far as the modal density 
increases –which is globally the case in a car in the mid–
frequencies– the number of subsystems increases. In a 
car, the number of subsystems should reach an 
asymptote above a given frequency where the whole 
structural complexity has been revealed, that is to say 
when it may be seen as an ensemble of connected 
plates. For a car body, this frequency is higher than 2 
kHz. 

As stated above, the sub-structuring has to be pertinent, 
in the sense that -characterized by a reduced modal 
energy matrix- it is able to be identified to a SEA model.  
The performance of a given sub-structuring is related to 



the precision of the associated SEA modeling; thus, 
expression (48) can be used to build various metrics for 
the sub-structuring performance, as it was shown 
previously. 

From early studies, several algorithms have been either 
developed or checked to group the nodes in the most 
SEA-consistent way. The latter involves attractive, 
genetic, dichotomic and entropic algorithms that could 
be mixed up or chained [Ref 13]. Among various 
algorithms, the so-called “attractive method” seems to 
give the best results and most of the development has 
been focused on it. 

ATTRACTIVE SUB-STRUCTURING METHOD 

Let us assume  is an initial partition of the considered 
structure into subsystems and is made of  groups of 
nodes, denoted . The point-to-point transfer inside a 
group is referring to the related nodes k and l. One can 
define the probability of one particular node k  to be part 
of a subsystem as: 
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This probability is 1 in case  (1-subsystem 
partition). If the average is restricted to excitation nodes 
l' inside the subsystem defined by , the probability is 
less than 1. Given a partition and the node k , one can 
check its probability to be part of an another subsystem 

 as 
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Thus, this probability can be considered as an attraction 
factor of a node to a subsystem. In each subsystem, 
there is a node of lowest probability. This node can thus 
be moved to the partition of maximum attraction. Node-
probabilities need then to be re-evaluated and the 
process can be re-iterated in a loop till it comes to an 
end. Nevertheless, no convergence criterion was found 
to this process and the flux of nodes, within each 
iteration, depends on the initial partition. 

INITIAL PARTITION 

This initial partition is generated by applying a given 
threshold to the modal transfer energy matrix, starting 
from the matrix maximum. All nodes within the threshold 
are gathered (threshold group, tg) and removed from the 
matrix. This process is re-iterated until all nodes have 

been allocated to subsystems. In practice, the partition-
initialization routine is more complex as a subpartition 
(stg) of tg is also performed by applying the threshold to 
all nodes part of tg. The final retained tg set is obtained 
by selecting nodes satisfying to the reciprocity principle: 
two nodes both excited and observed must be included 
in the final tg set. 

The most convenient threshold seems to be the mean of 
the modal transfer energy matrix. Nevertheless, as 
mentioned earlier, it was observed some dependence of 
sub-structuring to the threshold value.  

ALGORITHM STABILIZATION 

After having improved the computational performance of 
the attractive method, it was possible to perform series 
of sub-structuring related to initial partition threshold 
value.  

For each sub-structuring, a correlation matrix is 
computed between nodes. The correlation matrix C is 
such as 1=klC  when nodes k and l belong to the same 
subsystem, 0=klC when they don’t. C matrices are 
averaged over all sub-structuring series. At the end, 
nodes with a correlation value equal to 1 are part of the 
same subsystem over all partitions. These nodes 
provide a very robust and stable sub-structuring and this 
sub-structuring is called sub-structuring attraction kernel. 
After the attraction kernel is identified, remaining nodes 
are associated to their most probable subsystem using 
relation (55). This method is very fast as the 1200 nodes 
of a car body can be grouped into 1 hour into 
subsystems on a standard PC (see Figures 2, 3, 4). 

The sensitivity to node choice and sampling is widely 
reduced by the new variables introduced in equation 
(26). This is illustrated in Figure 5 where the transfer 
functions at dash panel nodes are compared with and 
without mobility normalization. 

The identification of CLF parameters is then performed 
by Lalor's method and the number of unknown CLF's is 
user's defined. As default all subsystems are cross-
coupled as in Figure 5. The quality of transfer 
reconstruction can be now checked by comparing initial 
and reconstructed transfers, following equation 47. 
Figure 7 shows the mean matrix error in dB (eq. 48) 
between both transfers when averaged over directly and 
indirectly excited subsystem domains (left) and the 
histogram of errors (right). The latter shows that 95 % of 
transfer functions lie within 2 dB error. The full initial 
1217 x 12147 FRF matrix has thus been packed into a 
small Loss matrix of 34 x 34 able to reconstruct the 
vibration field within 2dB errors.  

Virtual SEA models provide most of the classical SEA 
features such as power flow analysis as shown on figure 
8. As expected the power flow is larger in directly 
connected structures. 



 

 

Figure 2: Full substructuring of a body-in-white, using the attractive 
method. A total of 34 subsystems is found. A subsystem is a collection 
of nodes, each node being at the same time an excited and a response 
node used to create the FRF energy matrix 

 

 

 

 

Figure 3: Car-body auto-substructuring details; windscreen and roof 
nodal partition. The windscreen is seen as 1 full subsystem while the 
roof is subdivided into 3 subsystems. 

 

 

Figure 4: Substructuration details, the attraction kernel; Nodes are 
grouped together by the attractive algorithm. The more robust grouping 
is the kernel of the attraction method. The kernel includes only nodes 
always found together in the various sets obtained for different 
thresholds of the FRF matrix. Compared to subsystems in Fig. 3, the 
wind screen is here made of two groups of the kernel nodes. The roof 
is split into four kernel groups. After attraction of remaining nodes on 
the kernel, the final substructuration is obtained as shown in Fig. 2 and 
3. 

 

 
Figure 5: View of Fig 2 model in the SEA inverse solver. Each box is a 
subsystem and in-between are drawn the junctions. To identify the 
CLF, all subsystems are crossed coupled together per default and 
there is no need to a priori detect the physical connections between 
subsystems. After CLF are obtained, it is possible to automatically 
remove weak links (i.e. junctions that always carry very low power in 
all) possible excitation configuration) in order to simplify the model and 
limit the number of parameters 
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Figure 5: Example of scattering of transfer mobility in the 
dash panel (a) Nodes of subsystem 9 (part of dash 
panel) where the transfer mobility is computed;  
(b) The various transfer mobility T99 (within subsystem 9 
self-excited by unit-force at all internal nodes locations); 
(c) Same transfers but in modal energy transfers En99 
(within subsystem 9 self-excited by unit-power). By 
going to local velocity² to modal energy using 
appropriate normalization the scattering is reduced to 
less than 3 dB, meaning the modal energy matrix 
becomes insensitive to node sampling
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a 

Figure 6: Number of modes per 1/3rd octave band as estimated from 
the 34 SEA-body-in-white model of figure 4 b 
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Figure 7: On the right, matrix error between the initial modal transfer 
energy matrix and the reconstructed modal transfer energy matrix. 
Color scale is in dB. On the left, percentage of reconstructed transfer 
within a given error interval in dB 
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Figure 8: Main power flows within 10 dB range in 630 Hz band when 
exciting the dash panel S09 

S09 



CONCLUSION 

In this paper, the previously published Virtual SEA 
method was first modified in order to obtain a more 
accurate prediction of point-to-point structural transfer 
functions, using a statistical treatment of FE results, later 
identified to a SEA model. A SEA model is useful in a 
design process because it allows investigating the 
effects of local structural modification (including 
damping) on the structure response to any vibration 
sources. Coupling loss factors are nearly independent of 
damping at least in the frequency range where weak-
coupling assumption is verified between subsystems. It 
is why coupling loss factors provided by virtual SEA 
under uniform damping assumption are robust as far as 
subsystems remain weakly coupled. Measured damping 
loss factors can thus be provided separately to the 
virtual model with good predictive results as shown in 
[3]. 

The applicability to industrial problems -such as a car 
body modeling in the mid-frequencies- has been greatly 
improved by working out the numerical process of the 
two most time consuming tasks: the FRF synthesis and 
the automatic sub-structuring process. The whole virtual 
SEA process can now be performed within a few hours 
for an average size (150000 nodes) car body FE model, 
in the range 200-800 Hz. Of course, Virtual SEA 
predictions quality will be strongly related to the FE 
model construction, which is another topic. 

There are many perspectives to this work. Let us just 
mention two of them: 

• The Virtual SEA model has to be properly connected 
to cavities. The space-frequency information required 
for sound radiation computation will have to be 
generated from the copious data now available mainly 
by estimating the mean subsystem wave number. 

• Confidence level of the predictions has to be 
determined when accounting for the various 
uncertainties occurring throughout an industrial 
process.  Recent work on stochastic modeling [Ref 14] 
allows the determination of FRF's confidence interval 
due to any model change within a given range, from 
which the SEA statistics can be extended to industrial 
products ensemble.  
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